PIE N e b 8Ty e e e et e Ny
ke sy

-
L3

BTE FIE COBY mteen

SELS-TI- (¢

- ;ﬁ. Camogie-Metton University

—T&==" Software Engineering Instivute
Wntoiigent Asslatance without Artificiel Intelfigence

e AR i

S R e e

[RSP USRS

Technical Memorandum
SEL5-TM-14
September 1906

Inteiligent Assistance without Artificial Inteliigence

by

Gali E. Kaiser*
Columbdla Unlwnlty

., and

Peter H. Feller
Software Engineering Imtltuu

Approved for Public Relesse. Distridution Unitmited.

ELECTE
JUN3 087

- vina -

‘This peper was written while Dr. Kaiser was » Visiting Computer Sclentist at the Sofiware
Engineering ingtitute, Camegie-Mefiun University, Pittsburgh, PA 15213,

The development and maintenance of SMLE is supponted in part by the United States Army,
Software Technology Dmbpmom Div'sion of CECOM COMM/ADP, Fort Monmouth, NJ and in
pant by ZT1-SOF of Siemens AG, Munich Germany.

Copyright (C). Peter H. Feiler and Gail E. Kaiser

Tabbof_conbnu
1 Introduction

l!l'll}eﬂ Por
NTIS GRAAX
DTIC TAB

Unansounced o
Justifisetion ...

"‘ .
Distridntien/

Avutlab};l!v Codes
Avail and/er
Dist eelal

al |

PR NINOCARR VDWW =

-l
-l

b b oa b
DN

List of Figures ‘ ‘ - ‘
Figure 1: Database of Software Objects 4
Figure 2: Experimental and Public Databases 9

-
B - e V;w
! - NN
PN «
Vo
PR | PR SR f
'
N - - . e
’ \ N]
. N
. o >
- * tat v | ‘

()

Intelligent Assistance without Artificlal intelligence

Gall E. Kaiser!
and ‘
1 1 ". o

p :
mwﬁw%&w&.mmmmmmmmma
an intefigent assistant. SMILE presants a fisless envimnment', derives and transforms data 10
sheler users from entering redundant information, automatically invokes programming tocls, and
actively participates in the software development and maintenance procecs. Unike other intel-
Tigent assistants, SMILE is not a ruie-based environment: Rs knowledge of software objects and the

_tintroduction |

n 1973, Winograd discussed his dream of an intalligent assistart for programmers [23). More
recently, artificial intelfligence: ressarchers have extended programming languages and environ-
ments (primarily Lisp environments) with knowiedge about the relationships among program units
[26] and the ruies goveming the software development process [3, 1, 22] in an attempt to fum the
dream into realty. The resuling systems support ‘exploratory prograrming’ by an individual
programmaer very welt [21], but they do not provide the assistance necessary t0 menage large-
scale davelopment and maintenance. However, as Al projects, such as ‘expert systems’, have
mwwcommuym researchers have tumed thelr efforts towards developing

this kind of assisiance [11, 18] mdmbommcywi}lpmc:moxoolo:\tmu
‘J,e T2 Aol 8 RY!

in the meantime, R is poublo to &:und production-quality software snginesring environments that
provide seemingly intelligent assistance without requiring new breakthroughs in Al research.
There is aiready (at least) one such system—thé Software Management and I.cremental Lan-
guage Editing system (SmiLE)—that provides seemingly intelligent, interactive support for teams
of software developers and maintainers. SMILE does not use artificial intafligence techniques; it is
not even written in Lisp. SMILE was wrmn in C and runs on Unix™.

MhoughSwLEhmenlyomold R has not been discussed in the Merature, oxcepunack
nowiedgements by researchars who used it to develop their own systems. SMILE was developed
by one of the authors, starting.in 1979, originally as a tool for developing research prototypes for
the Gandalf project {16]; it has been used extensively by both authors and by many others since
1980. SMILE has been refled on by the Gandalt and Gnome (7] projects at CMU and by the
inscape project [17] at ATAT Ball Labs; & has been distributed to at least forty sites. SMILE

‘Thhmwunwﬂmnwhb mx;:«mawmmwumuunmimmw lmilum_

red
>

B e ey e v

passes tho crucial test of supporting s own maintenance. mWNMMKm
present the goals of SMLE and explain how they were achieved.

The original, high-level goals of SMILE wera at follows.

+ To hide the file system and the operating system from the users. SMLE presents a
Thelsss environment’; that is, SMILE exposes its users only 10 the lagical structure of
the target software system. The normal akemative is for uters to deal with the
ohysica! storage of the software in terms of directories and files, which clten do not
correspond nicely to the logical structure. '

¢ To sheiter the users from the tedious task of maintaining redurdant information.
SMILE requires Rs users {0 entar gach Rem of Information only once; & automatically
raneforme the data ae needed by tools. SMILE derives necessary information that
can be calculated from the data supplied by users.

-Towm.hvocatbndtoohdappmpdmpom SMILE assists the users by
automatically performing trivial software development activities such as calling grep,
int, cc, make, and other Unix utllities [12] with the appropriate arguments at ap-
propriate times. In some cases, the tool is invoked as soon as its input is ready; in
other cases, the tool is not called untli its results are required, such as 0 answer a
user query or to provide input to another tool. SMILE hides the particularities of Unix
and presents a uniform programming model different from. the mode! imposed by

- Unbe. _

o To actively participate in the software development and maintenances procass. SMILE
is an interactive system, and ull programming activities take place within the environ-
ment. in addition to calculating auxiliary information and automatically invoking tools,
SMILE anticipates the consecuences of user &ctions and automatically pmonts ap-
peopriate warmning messages. N

eTo be sutti:ientty robust and reliable for supporting relatively large academic
development projects. It automatically recovers from inconeisiont states siter user-
inkiated aborts and machina crashes; it aiso stores information redundantly to sup-
podmoovmﬁomdiskmsorusownm

AR of these goais have been achieved. SMILE maintains source code, object code and other
software development information in a database mapped onto the Unix file system. Knowledge
of software objects and a model of the soitware devsiopment process are herdcoded Into SMILE'S
commands. SMILE incorporates a large collection of Unix utilities, pius several special tools
developsu as part of the Gandalf research. SMILE has supported the simultaneous activities of at
least seven programmers, ard the largest software system developes and maintained in SMILE
has approximately 61,000 fines of source code [13]. '

The following sections present the goals and achievements of SMILE in more detall. 'Section 2
explains SMILE's external archRecture. Section 3 describes how SMILE assisis individual program-
mers, while Section 4 describes the facilities oriented towards projects involving many program-
mers and long lifetimes. Section 5 discusses SMILE's implementation and current statue Section
8 compares SMILE to other software engineering environments. We concludes by summarizing the
significance of SMILE as an example of intelligent assistance without artificial intelligence.

)

»

3

acaas e A

2 Architecture

SMLE I8 Intended for use by small teams of programmers (S to 20) developing and maintaining
medium-size software systems (10000»250000Molmmcodo)mmc taking
maximum advantage of the Unix tile system and utilikties.

21GC

GC (Gandal C) [28] is an enhancement of C that lists the typ 38 of formal parameters within the
" argument list (as in Pascal) and provides a module interconnection language (MIL). The MIL
defines modules consisting cf four types of source code objects (calied Xems): procedures,
varigbles, types, and macros. Each module hes an import st indicating the Rems required from
other modules and an expornt list indicating the tems accessible to other modules. GC was
adopted by the Gandalt project for alt implementation efforts. SMILE supports GC, but automati-
mum"msoumandhowormeshommndaMCbGCmdvicovcrsaasneededto
" Import existing source code and to take advantage of C-specific programming tools. Throughout
the rest of this paper, we mean "GC" when we say "C",

2.2 Databases
SMiLE maintains all information about a software system in a database similar to the ‘obieétbasas'.
of more racently deveioped programming environments [2, 15]. Each object has several at-

tributes, representing auxifiary information, and is typed, enabling SMILE to provide ob]act-
oriented commands that apply type-specific tools,

A database consists of one or more 'pro]octs'. sach representing a distinct scftware systern ..
Most databases contain exactly one project, so we say ‘databass’ and ‘project’ interchangeably.
" A project contains & number of ‘modules’ corresponding to GC modules. Each module contains a
set of procedures, a set of variables, 8 set of type definitions, a set of macros, & fist of impo:t
Rems, and a fist of export items, as illustrated in Figure 1. The source text of pmced:ros. vaik-
ables, types, and macros are written in GC. Eachmdulcar\dnomlsattrbtnedwﬂhstatus
information, such as whether or not it has been compiled since &k was last modified. Modules also-
contain object coce, but this is never explicitly visible to users. ’

2.3 User Interface

SMILE'S user Interface is script-oriented, and does not take advamage of wirdows or menus.2
However, soms tools included in SMILE, a.g., screen-oriented editors, behave differently for bit-
mapped screens than for dumb terminals.

2The workstation implementations of SMLE do support windows. In particuiar, a user can modiify a database in.one
window while browsing through the databesé in a second, mad-only window; see Section 5.

ogamtit: P, ...
moptist: P3frem MY,...

” [n o ...

Figure 1: Database of Software Objects

The user interface is Triencly’ and inx judes on-Ene hep facilitius. It is 1.0t necessary 1o remember
elther commands or arguments. The .iser can type a carriage-retum after entering any part of the
command line, and SMILE wifl prompt, one at a time, for remaining arguments; each prompt
indicates a defaull value baued on the user's most recent activities, and the user types a carriage-
retum 10 accept this defaul. If the user types “7° at any point, SMILE lists the currently valid
akematives according to the user's context. If the user instead anters “heip”, then S:iLE explains
the selected command and Rts amument. The user can also hit the interrupt key to any prompt to
abort the current command. SMILE permits the user to abbreviate commands and arguments of
communds 10 the shortest unambiguous form, and prompts with the possile choices ¥ an ab-
breviation is ainbiguous. ‘ :

- 3 Programming Assistance

SMILE assists individuais in writing programs. It maintains C source code, object code, and the
stutus of these objects in ts database, and automatically performs menial development activities.
For example, t wams the programmer of the implirations of changing the specifications of source
code Rems, and it automatically recompiles after changes.

V]

2
T

<

3.1 Browsing

'whmunummvbmommughaﬁ!.mmom. .The user sylects a particular

module—the user's focus—which s then indicated in SMILE's top-level prompt. SMILE assumes
that further commands refer to this module and ks ccntents untit a difarent module is selected.

Browsing s objact-oriented, in the sense that SMILE automaticaily invokes the appropriate viewing
tool according to the typs of the seiccted object. For C source code, this Is normally a scresn-
oriented text oditor; en earlier version of SMILE also provided a syntax-directed editor. Although
SMILE assumes alt commands are with respect 1o the current focus, &t can shift focus automati-
cally as the neod arises. For exampls, i the user asks to visit an item that is not.in the current
module but is in some othar module, SMILE chanpes the focus before Invoking the appropriate
viewer tool.

SMILE also suppor's general searches. A query can apply to an individual Rem, a module, of the
entire database and SMLE can further fiiter.the results of queries to display only tems of a par-
ticular typs (Import item, procadure, variabie, efc.) or only items that match some patters. Pattem
matching can be applied ‘o the name of an tem or to its source text, and a search can be appiled
to either the definition or usage of kems, or SMILE can gensrate a full cross-reference table. The
nwlsdmerbsamdisplayodonthoscmenhmfomdamau whiehcanbemlledu
SMts'smnfmmwm\!natextedilorthatmpponsuwshens SMILE can aiso direct its answers
fo an external file o & printer. SMILE remembars past activities on a user-by-user basis; this
supports, for example, a special option for the printer to spool only those items that have changed
since last pricned by the particular Lser.

3.2 Editing

SMILE creates and deletes modules and Rems within modules. I the user asks to remove an
tem that is in another mocdule, SMILE requests confirmation before automatically changing focus
to the other module to carry out the command. Thus, SMILE is forgiving of minor user errors. The
add command requires the type of the new ltem; If this is not given, SMLE prompts for the
missing argument. SMILE invokes the type-specific tool, and the iow-leve! commands provided by '
the tool ars used to construct the cortent of the tem. If the user enters a command fo write,
save, save-and-exit, eic., then the new item is stored in the database; if the user tslis the tool to
abort or exit (without saving), efc., SMILE aborts the original add command. SMILE does this by
monRoring the tool no changes to the tools themselves are required.

Simitarty, an existing item can be added or removed from tha imports or exports list of the current
moduly. When a new item is created, SMILE automatically asks the user whether or not it shouid
be added to the exports list. When an item is removed from the exports, SMILE warns the user if it
Is imported by other modules and requests confirnation; i confirmation is given, it automatically
removes these imports as well. When a user tries to delete an existing tem, SMILE veminds the
user If it is exported and requests confirmation: before removing the corresponding item from the
export list.

The user can make changes to tems through the edit and change commands; SMILE invokes the
appropriate editing tool. Edit restricts the user to making local changes to the body of an item,
whereas change allows the user to make changes to both the specification and the body, which
may have side eifects on other tems. For example, edit invokes the editor tool only on the body
of a C procedury; if the tool sSpports multiple windows, then the header of the procedure is
displayed ior refersnce in another, read-only window. (n the case of a C variable, edit permits
the user tuv Mmodify the inltialization, b+t not the actual declaration. The edit conwr:and does not
apply 10 types and macros, because any modification can affect usages.

Sometimes changing the specification of an kem has implications beyond those anticipated by |
the user. Therefore, SMILE always informs the user of potantial problems befors the damage is

done. When the user selects the change command, SMILE queries its databaso to find all the -

other ltems that may be affected by the proposed change and informs the user of the extent of
this change, in terms of how many other tems might subsequently have to be modified to main-
tain congistency; it displays the actual depandencies on request. The user can abort or go ahead
with the change with full knowledge cf tho implications.

3.3 Error Detection and Error Reporting:

After a user adds, removes, or modifies an item, SMILE sunplies rapid feedback regarding static
semantic errors. The semantic analysis is applled only to the changed item rather than to other
Rems affected by the change. SMILE propagates the change by updating the status information
for dependent Rems. If the user requests it, SMILE submits these for analysis; this is explained in

the following section.

The analycis is performed in a background process, so that ti:e user does not have to wal for the
tool to compiete before cominuing other activities. When processing completos, all error or wam-
ing messages are saved as an aftribute of the curent moduie {the focus), and the prompt is
changed to indicate the errors. The user can ignore the errors, or ask SMILE to display the
messages; thus, SMILE separates error deiection from error reporting. Both the messages and
the visual cue in the prompt remain until the user edits the offending item, so the user does not
need to remember the particular errors or even the facl that there are errors within the particular
module. It is less intrusive to indicate errors by appending a notice to the prompt than to display
tha errors themselves. An earlier version of SMILE dumpec all the ermor messanas on the user's
screen as soon as the tool compieted. This behavior was judged unacceptable because it inter-
rupted the user's activities; the user was forced to read the messages then and ramember them,
because they were not stored.

3.4 Bookkeeping

SMILE maintains status information for each item. For example, each C item has a status field
that indicates whether or not its static semantic analysis is up to date, whether the analvsis was
successtul, or whether analysis Is in progress in the background. SMLE maintains the correct

value for the status fleld. Furthermore, SMILE automatically propagates changes 10 ems by
updating the status flekd of other kems that might be affected by the change. The user can
examine the status information for any em or display all items with a particular status. A user
might use this information, fcr example, 10 request re-analysis of a particular kem or all tems

sffected by a change or to look for tems that still have errors and need correction.

SMILE performs code generation by compiling at the granularity of @ module. Therefors, t main-
tains a status fieid {or each module indicating whether or not its object code is up to date, or being
generated in the background. After compiling & module, SMILE indicates the resulting status in .
this status field. SwMILE invalidates generated code by setting the status field accordingly under
any one of several conditions:

* & new Rem is added to the module;

o an existing item is moved between modules, removed, edited or changed;

e an lem I8 added to or removed from the import lst, and this tem Is actually
referenced by an item of the module;

o an exported item is changed, and thig itam is imported into another modula, whera it
is actually referenced by an item in the importing module.

3.5 Code Generation and Linking

‘SMILE recompiles modules and relinks the system as needed. I. racognizes several alternative

notions of ‘as needed’. There is a tradeoff between recompiling immediaiely after a item of a.
module changes and delaying until the user requests svstem execution: Late recompilation re-
qQuires the user to walt, but early recompilation may be wasted due to further changes to the same
module; it also affects response time after each change. An earfier version of SMILE automatically
recompiled as soon as an Rem changed, but recompiled only the em rather than the entire
module. This was changed because the time and space overhead was unacceptable. The

" processing performed by the compilation too! after every modification led to slower response due

to the cycles taken by the background job. Space was a problem because a separate object code
file was generated for each item. SMILE now compiles an éntire module rather than individual
items. This optimization was done without aﬁecting the interaction with the user.

' SMILE automatically generates a makefile, including the appropriate command lines, and invokes

make to construct an executable system. If a file name is given as an argument, the executable
code i8 placed in this file; otherwise, standard Unix practice is followed and the output goes to the
"a.out" file in the current working directory.

3.6 Modes

Modes permit the user to control and adapt SMILE’s behavior. Users can set modes explicitly with
a ecommard or implicitly in thelr SMILE profiies. Every mode has a type and a default value. The
ooolean Autocompilation mode permits the user to indicate to SMILE whether it should temporarily
refrain from automatically carrying out analysis and code generation. This is a desirable feature

when the user starts making major changes to the epplication. Ancther boolean mode rclated to
compilation indicates wnaether or not the compiler should generate moro elaborate debugging
information. The Verbose mode indicates the leve! of verbosity ¢! SMLE's wamnings and sugges-
tions.

Somes modes are used to tailor SMLE ;0 a particular operating envirorment. CMU mode permits
SMILE to take advantage of some special CMU utilities. Home mode defines SMILE's home dirac-
tory in the loczi ta system, and Print mode names the local tool for spooling fo the printer. SMILE
is aiso tzilored by the search paths and other environment variables defined in the user's Unix

~ profile.

4 Development and Maintenance Assistance

SMILE assists software teams with their long-term development and maintenance activitles. 1t
coordinates simuitaneous activities by multiple users, encourages reuse of existing coda and
Ioos source coda changes.

4.1 Reservations

SMILE prevants multiple users from modifying the same moduid at the same time by requiring the
user to raserve a moduie before making changes to the module. If a user tries to modify a
conponmt of a module that is nct reserved, SMILE explains that reservation is necessary. Only
0ne user can reserve a module at a time. It another user attempts o reserve a previously
reserved modiile, SMILE informs the useraboutwhohas reserved the module; users can also

Query reservation status explicitly.

SMILE helps users avoid making incompatible changes. If a user tries to change tha specification
of an exporied itein, SMILE checks to make sure that that all the modules that import this item are
also reserved by the same user. It not, SMILE informs th? user of the'r reservation status.

- 4.2 Experimental Databases

Reservations are aiways made with respect to a privaie workspace called an experimantal
database. Figure 2 shows the relationship between experimental databases and the public
database, which contains the baseiine version of the software system. The modules in the public
database are availatle to all members of the software team, while the contents of an experimen-
tal d~tabase are private to its owner. An experimental database is a lagical copy of the public
database; SMILE employs & copy-on-write strategy to conserve space. Only modules reserved in
the current experimental database can be modified. Additional modules can be reserved at any
time, provided they are not already reserved by another user. SMILE automaticaily prelinks non-

reserved modules (in a background process) to improve the rasponse time of system generation.

Wren a user completes a set of changes, the user gives either the update or deposit command

&

[-e.-:l-.:- e

HEB A s O
AR BEOCB B30
- Figure 2: Experimental and Pubiic Databases

nnmmaummmﬁmmmmmmnu Lpdate retaing the reservations, 80 the
user can make further changes, while dposit removsa I » reservations. In eRher case, SMnE
makes the changes avakabie 10 the rest of the softwace team by replacing the previous versions
In the public database with the changed modu'es from the experimental database. SWiLE permits
mnbbﬂuﬁdlmpo«dehmbynhuhoﬂnmumm 90 other users can
mmmmmMawﬁwo

Mmmdmwwadm.MummumdummMmm
ensure thet they have been analyzed and “ompiled surce Jully, without any errors. It there are
inounsistencies, SwiLE soorts the command. othurwiss, Sl 8 locks the public database white Rt
mommounaswmmpmmm mwmmmu
trangactions 'with respect to the public database.

4.3 Transactions

Evamthlmnuoﬂon htheumﬂhﬂlhhwaabhtocopryaoooond
command wthin the same database until the first command terminates. Background processing
is coordinated in such & way that Rs results are i corded without confficting with the transaction
modei. An earfier version of SMILE saved Its intemnal state on disk after sach transaction in order
to record the changes . a faii-safe manner. This led to poor responsiveness when there were

five or more simultanecus users in a time-sharing environment (on a VAX™ 780) and was

An o worbstation impementatons of SuLE, lmwmmwmdnd‘mA’Qh-mwm
during & ransaction; se; Section 5.

discontinued.* Cumrently, SMILE saves state after the number of transactions indicated Ly the
Checkpoint mode, and always saves state before and after commands thet cause major changes,
such as chango, updste, end deposk. A user can select full state saving by setting the Check-
point mode 10 1; Mcmamu.thous«canoxpmwmmc!l:pwimmmm«pmmhm

orucial changes.

SmLE coordinates changes among the experimental databases owned by the members or &

software project. A user can add a new module only within an experimental database, but SMiLE
records the addiltion in the public database 10 prevent another user from adding another new
module with the same name. Simiiarly, SWILE records adcition of import Rems In the public
database, since another user may attemp! to deiete the Rem in a different experimental database.
. When the public database is locked during a transaction, other actiors that affect the public
database are blocked until compietion of the transaction, &mwwmoﬂmmo
soversl minutes, blocked commands time out after thity seconds and SMLE advises the user 10
try again later. This enables users to peiform other development activities white they walt.

4.4 Change Logs

When programming feams are large, R is useful to maintain on-iine change fogs. Whenever a
user updates or deposits the contents of an experimerntul database, SMILE prompts for a log entry
for each modified module. SMILE automatically includes the user's name, the time/date, and the
module name with tho text provided by the user. Users can 3is0 append log entries for their
reserved modules at any time. A user can Query the entirs log for & database or only the log for a
particular module, and request entries since a particular date and/or by & particular user. SMILE
prevents tampering with previov's log entries, 80 a full audit trall of past changes is aways avail-

4.5 Maintenance and ‘Oid Code'

As software systems bacome older, the modular structure tends 10 degenerate. Impornt and ex-
port lisis grow and rarsty shrink, even though an imported item ig no longer used in the importing
module and an expoited am is no longer used outside the module, or even insida the module.
SMILE assists users in restructuring oid systems by moving teme from one module to another and

adjusts the importa and exports acoordingly, by adjusting the imports and exports throughout the

database 10 reflact the actua! interconnections determined by cross-references, and by detecting
uoised 1 oms,

SMILE provides faciities 1o bring extemally deveioped ‘okd code’ into & database, so I can assist
future maintenance and enhancement activitias. SMILE can &iso copy modules from one
database to another. SMILE makes It easy 10 use software maintained outside of & SMiLE

“This performance probiem is reduced wher. SMLE runs in 8 distribumd workstasion savisnment: see Section §

10

&

ey
34

database: Every moduie and every database may have a prelude, which lsts external files and

~ definitions of outside procedures; the comesponding object code files and Unix ibraries are isted

in Svs ‘brary ems. The add, remove, and change commands apply to ibraries, as do the
browsing feciities. The names of necessary Drarles are given as arguments o the bulld com-
mend 10 incorporate them In an executable system. SMILE heips users create new Unix archives
and lrailes. R can producs & Unix archive irom the C tems in the database and can generate a
single object code fils thet can e used as & Nbrary outside SMLE or within other SMILE

§ implementation

SMILE was originally called IPC, for incremental Program Constructor, but the name ‘¥as soon
changed 10 SMLE. A protolyDe Implementation was written in the Unix shell lenguage during
August 1979; R was used In September 1979 15 bootstrap 10 & more advanced implementation in
GC. These two versions ran on a8 POP™ 11/70 under Unix Version 7.

SMILE was 00N ported to 8 VAX (both 750 and 780) under Berkeiey Unix, where R supported the
intensive Gandall prototype [10] implementation in 1680 and 1981 and the development and
maintenance of the production-quaity Gnome environment starting in 1962. SMILE was ported ic
the Sun Workstation™ in 1984 and to the MicroVAX™ workstation in 1985. The MicroVAX ver-
‘sion le distributed by virtue of the Mach variant of Unix 4.3 BSD. The cumrent limplomentation
conslsts of 15,000 lines of GC sourco coce, which is nvalisbie on request from the Gandal

project at CMU.

Detalls

ARhough the osiginal IPC was impiemented in the Unix she®t language, neither IPC nor the later
vorsions ol SMILE should be thougit of simply &8 user shells. SMLE maintaing ts own database
of all information about & software project and provides Rs own commands for carying out
development and maintenance activities: in effect, SMLE presents its own model of the program-

ming process.

SWLE maps s catabase onto the Unix file system in a hlerarchical manner. Each database
correspcnds 10 & directory, which containg a subdirectory for each: project, which in tum contains
& subdirectory for each module. Each module directory cortaing two files isting the imports and
oxports, respectively, and four subdirectories, one each for procedures, variabias, types, and
macros. The text of each le is stored in a saparate file. This mapping to the file system is not
visble to users. Cross-relerencing information, status, and other derived attributes are main-
tained In a graph structure. This graph is dumped in bingry form 10 a riig within tha database to
persist betwsen invocations of SMILE. A backup copy of the graph i also maintained, but ¥ both
the original and backup are corrupted, the graph can be regenerated from the database.

SMILE protects Rs users from operating system crashes, which might leave a database in an

1

Inconsistent state. Sl automatically checks iis database at the beginning of every session: ¥
derived information such as error messages or obiect code has been lost, SMLE resets status
information t0 make sure they are rederivad. ¥ the most recent sestion with this database was
done using a previcus version of SMILE Rcelf, SMILE automatically reformiats the graph structure
and the database and adds de‘ault values for any new kinds of atiributes. Approximately 30% of
SMLE’s source code is for disaster recovery and sell repairs.

SMLE hides the Unix file system and Rts tools and utkRies from its users, with the exception that k
calis the user's favorite text editor. The defaul text editor at MU is Emacs [9], but a diteret
defaul can be substituted at sach site. SMILE imokes lint to detect static semantic errors in
S0Urce Code objecis, cc o compile modules, and make (0 gensrate executable systems. The
variants of grep suport SMILE's searches through source text and other objects. :

We have not modified these tools; instead, SMILE automatically transforms objects into the format
required by each tool. For example, SMLE combines the Rems of a module into & single file in the
correct order for input to the compiler. This made X easy 10 port SMLE from one version of Unix
~ another and to use new tuois as they became available (¢.g., lint replaced cc for static seman-
fic analysis in 1982) without these changes being visibie to the users. We believe k would not be
dificuRt to port SMILE to & non-Unix operating system, pmvdngltwpplndﬂmllnoob tnoonly
bedbobmdmmndatocyanatoxtodnor.acw« and & finker 3

6 Related Systems

SmiLE is similar 10 knowledge-based programming erwvironments, advanced programming lan-
guage environments, language-based ecitors and software engineering environments. In the fol-
lowing paragraphs, we describe the advantages and disadvantages of these systems with
respect to SMILE.

Knowledge-Based Enviopments: The CommonLisp Framework (CLF) (6], Refine™ [22] and
other knowisdgs-engineering environments can proviy SwiE-ike automation via
conditiorvaction rules [5]. However, they cannot recognize the sRemalive results of actions, e.g.,
the complier may terminate successfully, producing object code, or unsuccesstully, producing
efror messages. None of these environments support muttiple simultaneous users. On the other
hand, SMLE is not extensible, 30 1t is not as easy 10 add new kinds of cbjects and new tools.

Language Environments: Advanced programming languages such as Interisp [26], Loops
{23] and Smaiak-80™ (8] include run time environments that are indistinguishable from aingle-
user programming environments. ARthough they proviox SMILE-ikke facilllies, these are strongly
tied to the programming language. The implementation of SMILE is specilic 1o the GC, but t
would not be very difficult to re!mplament for another convenllonal programming language,

SEarly versions of SULE used only the Dol and utilites provided by Unix, but recent vertions a'so incluos » ~acisl tools
for fanguage-oriented programming environments. These tools ane not relevant 1o he fackites described in this paper.

12

provided corresponding tools were avallable. However, language environments can integrate
debuggirg facilties with the other tools. '

Languace-Based Environments:® Language-based environments add many of the advantages of
language envionments 1o conventional languages such as Pascal. The Synthesizer {25] and

Pecan [19] are examples of specific environments, while the Synthesizer Generator [20] and
Gandal are systems for generating such environments from formal descriptions. Most language-
based environments provide advanced user interfaces with menus and pointing devices, and
. perform varlous activities in responss to programmer actions, but they are unable to anticipate

" the potential results of actions and wam users before the damage is done. The practicality of
these environments is limited, since the entire software system is maintained as a single abstract
syntax tree; further, R is difficult to incorporate existing programming tools into these environ-
ments.

Engineering Environments: SMILE is most similar to Cedar [27), DSEE™ [14], Arcadia
[24] and other large-scale environments for software development and maintenance. Like SMILE,

these environments provide an interface between programming tools and the user on the one
hand, and between programming tools and the software database on the other. Such environ-
ments typically provide more advanced version control and project management facilities than ’
SmILE, but they leave individual programmers to the standard edit/‘compile/debug cycle supported
by traditional tools.

7 Conclusions

_ SMILE's primary contribution is the apparently intelligent assistance that spans both the activities
of individual programmers and the coordination of multiple programmers. SMILE provides this
aasistance by '
« maintaining ai information about a software project in a database;

e integrating Unix tools into a new model of development and maintenance that hides
the particularities of Unix tools;

¢ actively participating in the development and maintenance processes by deriving
data when possible from previously stored information, automating the invocation of
these tools and anticipating the consequences of toof processing;

¢ imposing .a structure on software development activities that permits it to ‘know’ what
the programmers are doing at all times, to ‘infer’ what they are nkely to do next, and
to ‘judge’ what it can appropriately do for inem;

s recovering from external and internal failures and repairing s databases automati-
cally, making tt sufficiently robust and reliable for production use.
SMILE provides this assistance without a knowledgebase of rules describiry) the software develop-
ment process. Instead, certain ‘common sense’ about software development activities has been

*We use the term ‘language-based environment synonymously with Tanguage-based cditor, ‘structure-oriented
environment, 'structure editor-based environment', ‘syntax-directed editor’, efc.

13

e, ‘smm R h R A s R At A TNEL R

programmed directly into the environmaent, resulting In a production-quaiity intelfigent assisfant @
that several projects have relied on 1o deveiop and maintain their software.

__.

e

TR

.

IS

14

ncknowledgemems

in addition to the authors, other past and present members of the aandall Project at Camegie-
Mellon University have been active in SMILE's evolution over the past seven years. Raul Medina-

Mora and David Notkin were invoived in the arly development. Barbara Denny, Bob E'lison and

Charlie Krueger have been responsible for maintaining and enhancing SMILE at various times.
Many other people have developed fools that are presently Ineofporated into SMILE. Nioo Haber-
mann is the pdnclpal investigator of the Gandalt Project.

15

U}

]

Bl

4

16

L)

(10)

I11l

References

mn;,,._,,_,\.\‘.ww.,,.‘,,,,,m:h.._,_vv,‘,,,‘,,...w, I

Robert Batzer.
A 15 Yaar Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SC-11(11):1257-1268, November, 1985.

Robert M. Balzer.

Living in the Next Generation Operating System.

In Proceedings of the 10th World Computer Congress (IFIP Congmss '86). Dutiin, -
ireland, September, 1988.

To appear as a book published by Springer-Verlag.

David R. Barsiow and Howard E. Shrobe.

From Interactive to Intelligent Programming Environments,
Interactive Programming Enviconments.

McGraw-Hill Book Co., New York, NY, 1984, pages 558-570.

" David R. Barstow, Howard E. Shrobe and Erik Sandewall.

Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984,

Lee Brownston, Robert Farrel!, Elaine Kant and Nancy Martin.

Programming Expert Systems in OPSS.
Addison-Wesley Publishing Co., Reading, MA, 1985.

CLF Project.

Introduction to the CLF Environment.

March, 1988. o

USC Iinformation Sciences !nstitute. . CD

David B. Garlan and Philip L. Millar.
GNCME: An Introductory Programrring Environment Based on a Family of Structure

in Pmooodfms of the SIGSOFT/SIGPLAN Software Engineering Symposium on Prax:iical
Software Development Environments. Pittsburgh, PA, April, 1984,
Proceedings published as SIGPLAN Notices, 19(5), May, 1984,

Adele Goldberg and David Robson.
Smaitax-80 The Language and its Implementation.
Addisnn-Wesiey Publishing Co., Reading, MA, 1983,

James A, Gosling.
Unix Emacs
Carnegie-Melion University, Department of Computer Sclence 1982.

Gail E. Kaiser, Robert J. Ellison, David B. Garlan, David S Notidn and Steven Popovich.

Gandalf User Manual and Tutorlal.

In The Second Compendium of Gandal’ Documentation. Carnegle-Mellon University,
Department of Computer Scisnce, 1982, :

Beverly L. Kedziarski. ' ' ‘
Knowledge-Based Project Management and Communiczation Support in a System

Deveiopment Environment.
In Proceedings of the 4th Jerusalem Confarence on Information Technology. Jerusalem,

_israel, May, 1984,

16

T TR T Ay e S e s e
e :

13

4]

[15)

(e}

AL

19

[19]

[20]

f21]

[22]

Brian W. KoniohanandJohn R. Mashey.

The UNIX Programming Environment.

Software — Practice and Experience 9(1), January, 1979,
Appears in IEEE Computer, 12/4), Aprit 1981 and in [4].

Charlie Krueger.
Private oosnamunicaﬂon
1986
Regarding largest system (ALOE) maintained in SMILE.

David B. Leblang and Gordon D. McLean, Jr.

Configuration Management for Large-Scale Software Development Efforts.

in GTE Workshop on Software Engineering Environments for Programming in the Large,
pages 122-127. June, 1985.

John R, Neastor.

Toward a Persistent Object Base.

In Proceedings of the IFIP WG 2.4 lnramtional Workshop on Advanced Programming
Environments. June, 19886,

To appear as a book published by Springer-Yerlag.

David Notkin,
The GANDALF Project. ,
The Joumnal of Systems and Software 5(2):91-10%, May, 1985.

Dewayne E. Perry
Position Paper: Tho Constructive Use of Moduio Interface Specifications.

In Third Interrational Workshop on Software Specification and Design. London, England,
August, 1985,

C.V. Ramamoorthy, Vijay Garg and Rajeev Aggarwal.

Environment Modeliing and Activity Management in Genasis.

in Proceedings of SoftFairll: 2nd Conference on Software Development Tools, Tech-
nigues, and Alternatives, pages 2-10. December, 1985.

Steven P. Reiss.

Graphicai Program Develspment with PECAN Program Development Systems

In Proceedings of the SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments. Plitsburgh, PA, April, 1984,

Proceedings published as SIGPLAN Notices, 19(5), May, 1984,

Thomas Reps and Tim Tellebaum.

The Synthesizer Generator.

in Proceedings of the SIGSOFT/SIGPLAN Software Englneeﬂng Symposium on Pract/cal
Software Davelopment Envimnments. Pittsburgh, PA, April, 1984,

Proceedings putlished as SIGPLAN Notices, 19(5), May, 1984,

8. A. Shéll.
Power Tools for Programmers.

- Datamation Magazine , 1983.

Reprinted in [4]. |
Douglas R. Smith, Gordon B. Koiik and Stephen J. Westfold.

Research on Knowledge-Based Software Envionments at Kestre! Institute.
IEEE Transactions on Software Engineering SE-11(11):1278-1295, November, 1985.

17

3

tw mme e e e e T e i e e e m e m e mm e m W e e i mm e e e = e e o s e

124)

[27)

(28]

{29])

. Al Kagazine 6(4):40-62, Winter, 19886.

-in 2nd International Conferency on Ada Appiications and Environments. |EEE Computer

. Tim Telelbaum and Themas Reps.

* The Interlisp Programming Environment.

Mark Stefik and Daniel G. Bobrow.
Object-Oriented Programming: Themes and Variations.

Richard N. Tay'or, Lori Clarke, Leon J. Osterweil, Jack C. Wiledon and Michal Young.
Arcadia: A Software Development Environment Research Project.

Soclety, Miami Beach, FL, April, 1986.

The Comell Program Synthesizer: A Symax-’)lrected Programming Envlmnmem
Communications of the ACM 24(9), September, 1981.

Reprinted in [4].
Warren Telteiman and Larry Maginter.

IEEE Computar 14(4):25-34, Apr. 1961.
Reprinted in [4]. |

Warren Telteiman.

A Tour Through Cedar.

IEEE Sofiware 1(2):44-73, Api”'. 1984,

Also appears in Proceedings ot the Seventh Intemational COnference on SOftware En-
gineering, 1984. ‘

Walter F. Tichy.
Sottware Development Control Based .on Moduls interconnection.
In 4th International Confarence on Software Engineering. September, 1979.

Terry Winograd.

Breaking the Complexity Barrler (Again).

In Proceedings of the ACM SIGPLAN-SIGIR Interface Meeting on ngrammlng Lan-
guages — In!ormathn Retrieval, pages 13-30. Galthersburg, MD, November, 1973.

Roprlnted in[4].

18

SHCUMITY CLASSIFICATION OF THIS PAG

_ /52 7Y

REPORT DOCUMENTATION PAGE

Ta. REPORT SECURITY CLASSIFICATION
UNLIMITED, UNCLASSIFIED

1b. RESTAICTIVE MARKINGS

2e. SECURITY CLASSIFICATION AUTHOR}TY
N/A

3. OISTRIBUTION/AVAILABILITY OF REPORT

aN ﬁ?iu“"!“TlONlDMONADiNG BCHEDULE

UNCLASSIFIED, UNLIAITED, DTIC, NTIS

4. PEAFORMING ORGANIZATION REPORT NUMBER(S)

SEI~86~TM~-14

8. MONITORING ORGANIZATION AEPORT NUMBER(S)
ESD-TR-86-221

SOFTWARE ENGINEERING INST. (If appliceble)

6e NAME OF PERFORMING ORGANIZATION OFFICE SYMSOL
SE1

7a. NAME OF MONITORING ORGANIZATION t
SEI JOINT PROGRAM OFFICE

6c. ADDRESS (Cily, State end ZIP Code))
CARENGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7. ADORESS (City, Stas e1d ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE
HANSCOM, MA 01731

9. PROCUFEMENT INSTRUMENT IDENTIFICATION NUMBER

Ss. NAME OF FUNDING/SPONSORING 8. OFFICE SYMBOL
ORGANIZATION (If appiicadie) -
SEI JPO ESD/XRSL F19628 85 0003

8c. ADORESS (City, Stale and ZIP Code) |
CARNEGIE~MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE Of FUNDING NOS.

11. TITLE (Inciude Security Classification)

INTELLIGENT ASSISTANCE WITHOUT ARTIFICIAL IN

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NC. NO. NO.
63752F N/A N/A N/A
TELLIGENCE

§12. PERASONAL AUTHOR(S)
GATI. KAISER AND PETER FREILER

FIELD GROUP SU8. GR.

13a. TYPE OF REPORT 130. TIME COVERED 14, OATE OF REPONT (Yr., Me., Day} 15. PAGE COUNT
F1NAL FROM ___ee. TO _oses SEPTEMBER 1986 18

18. SUPPLEMENTARY NOTATION .)
N/A

17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necetsery and identify by dlock rumber)

AS AN INTELLIGENT ASSISTANT,

AND MAINTENANCE PROCESS
RULE-BASED ENVIRONMENT:
PROCESS IS HARDCODED INTO THE ENVIRONMENT.

INTELLIGENCE TECHNOLOGY

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

SMILE IS A DISTRIBUTED, MULTI-USER SOFTWARE ENGINEERING ENVIRONMENT THAT BEHAVES
SMILE PRESENTS A
AND TRANSFORMS DATA TO SHELTER USERS FROM ENTERING REDUNDANT INFORMATION, AUTOMATICALLY
INVOKES PROGRAMMING TOOiS; AND ACTIVELY PARTICIPATES IN THE SOFTWARE DEVELOPMENT

UNLIKE OTHER INTELLIGENT ASSISTANTS, SMILE IS NOT A
ITS KNOWLEDGE OF SCFTWARE OBJECTS AND THE PROGRAMMING

'FILELESS ENVIRONMENT', DERIVES

WE DESCRIBE SMILE'S FUNCTIONALITY.

_AND EXPLAIN HOW WE ACHIEVED THIS FUNCTIONALITY WITHOUT RELIAMCE ON ARTIFICIAL

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassiFiep/unLIMiTeD [} "same 4s rer. § oTic usens

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22s. NAME OF RESPONSIBLE INDIVIDUA

KARL H. SHINGLER

-

22b. TELEPHONE NUMBER
(Inciude Area Code)

412 268-7630

22c. OFFICE SYMBOL
SET JPO

DD FORM 1473, 83 APR

EDITION OF Y JAN 73 1S CBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

B P

